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Abstract. Heavy-ion experiments provide important data to test astrophysical models. The high-density
equation of state can be probed in HI collisions and applied to the hot protoneutron star formed in
core collapse supernovae. The parity radius experiment (PREX) aims to accurately measure the neutron
radius of 208Pb with parity-violating electron scattering. This determines the pressure of neutron-rich
matter and the density dependence of the symmetry energy. Competition between nuclear attraction and
Coulomb repulsion can form exotic shapes called nuclear pasta in neutron star crusts and supernovae.
This competition can be probed with multifragmentation HI reactions. We use large-scale semiclassical
simulations to study nonuniform neutron-rich matter in supernovae. We find that the Coulomb interactions
in astrophysical systems suppress density fluctuations. As a result, there is no first-order liquid-vapor
phase transition. Finally, the virial expansion for low-density matter shows that the nuclear vapor phase is
complex with significant concentrations of alpha particles and other light nuclei in addition to free nucleons.

PACS. 26.50.+x Nuclear physics aspects of novae, supernovae, and other explosive environments –
26.60.+c Nuclear matter aspects of neutron stars

1 Introduction

Most of the visible mass and energy of the Universe is
in atomic nuclei. This suggests some common goals for
heavy-ion (HI) research. We can study nuclear matter un-
der extreme conditions of density (both high and low),
temperature, size, and isospin. The insight gained from
this study can then be applied to: 1) the fundamental
behavior of many-particle quantum systems such as cold
atoms in laboratory traps, 2) quantum chromodynamics
at high densities, and 3) compact objects in astrophysics
such as neutron stars, supernovae, gamma-ray bursts, ac-
cretion disks, and the origin of the chemical elements.

In this article we discuss links between HI and astro-
physics. We need to extrapolate HI data to astrophysical
conditions. First, one must extrapolate to longer times.
Core collapse supernovae (SN) are giant stellar explosions
that produce neutron stars and chemical elements and ac-
celerate cosmic rays. In SN the core of a massive star col-
lapses in milliseconds. This is a remarkably short time
scale for a planet-sized object that is more massive then
the Sun. However a ms is 1020 fm/c! and very long com-
pared to the time scale of a few hundred fm/c for a HI col-
lision. Therefore, SN involve matter that has had plenty
of time to reach thermodynamic equilibrium, while this is
not always the case in HI collisions.
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Second, one must extrapolate to larger systems. A neu-
tron star is a giant atom with a mass number of 1057 and
an atomic number of 1056. It is about 10 km in radius, or
18 orders of magnitude larger then a conventional atomic
nucleus. For this nearly infinite system, Coulomb interac-
tions play a crucial role and require charge neutrality be-
tween positively charged nuclear matter and a background
electron gas. Thus, one must consider the differences in
Coulomb interactions of finite HI collisions compared to
those of an infinite system.

Third, one must extrapolate to larger isospin. Astro-
physical systems are often more neutron rich than the
heavy ions that are available in the laboratory. This ex-
trapolation depends on the symmetry energy. The symme-
try energy S(ρ) describes how the energy of nuclear mat-
ter rises when one moves away from equal numbers of neu-
trons and protons. The density dependence of S(ρ) is very
important for many astrophysical systems, and can be de-
termined from HI experiments [1]. Furthermore, future ex-
periments with more neutron-rich radioactive beams may
provide additional information.

There are errors associated with these extrapolations.
Nevertheless, laboratory HI experiments provide real data
that can be used to place important constraints on many
astrophysical models. Without the HI data, one may be
forced to use untested theoretical assumptions that have
large errors.

In this paper, we discuss links between HI and astro-
physics. Section 2 discusses the high-density equation of
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state (EOS) and its implications for neutron star struc-
ture and supernovae. Next, we consider the EOS at sub-
nuclear densities. Section 3 discusses the parity radius
experiment (PREX) to measure the neutron skin thick-
ness in 208Pb. This determines the density dependence of
the symmetry energy and the neutron matter EOS at low
densities. Section 4 presents molecular-dynamics simula-
tions of the nonuniform neutron-rich matter in the inner
crusts of neutron stars. These nuclear-pasta phases may be
closely related to multifragmentation in HI collisions. Fi-
nally, Section 5 discusses the nuclear-matter liquid-vapor
phase transition in supernovae.

2 The high-density equation of state

The equation of state (EOS) describes the pressure P of
nuclear matter as a function of density ρ, temperature T ,
and proton fraction Yp. Heavy-ion experiments can probe
the EOS at high T and ρ and for proton fractions near
Yp ≈ 1/2. For example, flow observables can be used to
constrain the EOS with the help of semiclassical simu-
lations [2]. In addition, yields of other particles such as
kaons can provide additional probes of the EOS [3].

Unfortunately, it does not appear possible to directly
produce cold dense matter in the laboratory. The energy
needed to produce high compression always seems to pro-
duce high temperatures because there is no way to get the
entropy out. Therefore the authors of ref. [2] assumed the
temperature dependence of the EOS was that predicted
by some simple mean-field models.

Neutron stars (NS), on the other hand, provide unique
probes of the EOS of cold dense matter. Although they are
formed hot in SN explosions, they have plenty of time to
cool via neutrino emission. Thus NS can probe new forms
of cold dense matter such as color superconductors that
may not be accessible in the laboratory.

It is an exciting time to study neutron stars [4]. Power-
ful X-ray telescopes such as Chandra and XMM-Newton
and other instruments are slowly turning NS from theo-
retical curiosities to detailed, well-observed, worlds. Some
NS in binary systems have well measured masses near
1.4M¯. However there are now indications of more mas-
sive stars [4,5]. The structure of a neutron star depends
only on the EOS of cold neutron-rich matter. The stiffer
the EOS (higher pressure for given density), the larger the
radius R(M) of a NS, of given mass M . A typical neutron
matter EOS may give R(M) ≈ 11–12 km for M = 1.4M¯,
while a stiff EOS could give R(M) ≈ 13–14 km.

There is great interest in possible exotic phases for
high-density matter. The central density of a NS can be
several times the nuclear density. An exotic phase such as
strange matter or a color superconductor could lead to a
soft high-density EOS. (If the exotic phase has a higher
pressure than conventional matter, it may not be thermo-
dynamically favored.) This could lead to a NS radius of
10 km or less.

Astronomers are working hard to measure the radii of
NS, see, for example, [6]. One approach follows from ther-
modynamics and the properties of a blackbody radiator.

The luminosity L (total energy radiated per unit time) of
an isolated star is related to the surface temperature T
and apparent radius R as follows:

L = 4πR2σT 4, (1)

where σ is the Stephen Boltzmann constant. The surface
temperature can be deduced from X-ray spectra, while L
follows from the apparent magnitude of the star and an ac-
curate measurement of its distance. Unfortunately, there
are a number of complications with this simple formula.
Neutron stars are not perfect blackbodies, so corrections
from realistic stellar atmosphere models may need to be
included. Interstellar absorption can influence estimates of
both L and T . The temperature may not be uniform over
the stars surface. For example T can be larger at the mag-
netic poles compared to the equator because the thermal
conductivity is larger along the magnetic-field direction.
The distance to the star may depend on a very delicate
measurement of parallax. Finally, gravity is so strong that
the curvature of space is important. Some light emitted
from the far side of the star can be detected and con-
tributes to L because of this curvature. This increases the
apparent radius by about 30%. Nevertheless, astronomers
hope to have a number of increasingly accurate measure-
ments of NS radii. Comparing results from several differ-
ent NS measurements may provide a good check of these
corrections.

In addition to cold NS, one is also interested in the
structure of very young neutron stars as they are being
formed in supernova explosions. These hot, lepton-rich,
protoneutron stars can have maximum temperatures as
high as 50MeV. The EOS of protoneutron stars may be
directly related to the EOS deduced from energetic HI
collisions because the temperature, density, and proton
fraction can be similar. Furthermore, this protoneutron
star EOS is important for SN simulations [7].

3 The parity radius experiment and the

low-density EOS

We now discuss the EOS at subnuclear densities. This has
many implications for the structure of NS crusts. One can
obtain information on the low-density EOS from both HI
collisions and from precision measurements on stable nu-
clei. The parity radius experiment (PREX) aims to mea-
sure the neutron radius of 208Pb, accurately and model
independently, via parity-violating electron scattering. As
we discuss below, the neutron radius in Pb determines the
density dependence of the symmetry energy and the EOS
of low-density neutron matter. This information, from a
precision experiment on a stable nucleus, nicely comple-
ments the information from HI or radioactive beam ex-
periments.

Parity violation probes neutrons because the weak
charge of a neutron is much larger than the weak charge of
a proton [8]. In the standard model the proton weak charge
is proportional to the small factor 1–4 sin2 θW , where θW
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is the weak mixing angle. One can isolate weak contri-
butions by measuring the parity-violating asymmetry A
for elastic electron nucleus scattering. This is the cross-
section difference for the scattering of positive dσ/dΩ+

and negative dσ/dΩ− helicity electrons,

A =
dσ/dΩ+ − dσ/dΩ−
dσ/dΩ+ + dσ/dΩ−

. (2)

In Born approximation A is [8]

A =

(

GFQ2

4πα21/2

)

FW (Q)

Fch(Q)
, (3)

where GF is the Fermi constant, α the fine structure con-
stant and Q the momentum transfer. The charge form fac-
tor Fch(Q) is the Fourier transform of the charge density,
that is known from electron scattering. The weak form
factor FW (Q) is the Fourier transform of the weak charge
density. This is dominated by the neutron density and thus
the neutron density can be deduced from measurements of
A. Note, Coulomb distortions make ≈ 30% corrections to
A for scattering from a heavy nucleus [9]. However these
can be accurately calculated.

The Jefferson laboratory PREX [10] aims to mea-
sure elastic scattering of 850MeV electrons from 208Pb
at six degrees in the laboratory. The goal is to measure
A ≈ 0.6 ppm with an accuracy of 3%. This allows the
neutron r.m.s. radius of 208Pb to be deduced to 1%. A
full discussion of the experiment and many possible cor-
rections is contained in [11].

We now discuss the implications of the radius measure-
ment. Heavy nuclei are expected to have a neutron-rich
skin. The thickness of this skin depends on the pressure
of neutron-rich matter. The larger the pressure, the larger
the neutron radius as neutrons are forced out against sur-
face tension. Alex Brown showed that there is a strong cor-
relation between the neutron radius in Pb and the EOS
of pure neutron matter, as predicted by many different
mean-field interactions [12]. Therefore, the neutron radius
in Pb determines P for neutron matter at ρ ≈ 0.1 fm−3.
(This is about 2/3ρ0 and represents some average of the
surface and interior density of Pb.) The pressure depends
on the derivative of the energy with respect to density.
The energy of pure neutron matter Eneutron is the energy
of symmetric nuclear matter Enuclear plus the symmetry
energy S(ρ),

Eneutron ≈ Enuclear + S(ρ). (4)

The pressure depends on dEnuclear/dρ (which is small
and largely known near nuclear density ρ0) and dS(ρ)/dρ.
Therefore, the neutron radius in Pb determines the density
dependence of the symmetry energy dS(ρ)/dρ for densities
near ρ0.

Neutron stars are expected to have a solid neutron-rich
crust over a liquid interior, while heavy nuclei have a
neutron-rich skin. Both the skin of a nucleus, and the NS
crust are made of neutron-rich matter at similar densities.
The common unknown is the EOS of low-density neutron

matter. As a result, we find a strong correlation between
the neutron radius of 208Pb and the transition density of
NS crusts [13]. The thicker the skin in Pb, the faster the
energy of neutron matter rises with density, and the more
quickly the uniform liquid phase is favored. Therefore, a
thick neutron skin in Pb implies a low transition density
(maximum density) for the NS crust.

The composition of a neutron star depends on the sym-
metry energy. In beta equilibrium the neutron chemical
potential µn is equal to that for protons µp plus electrons
µe, µn = µp + µe. Neutron stars are about 90% neutrons
and 10% protons plus electrons. However, a large symme-
try energy will favor more equal numbers of neutrons and
protons and increase the proton fraction. Thus, the com-
position of matter in the center of a neutron star depends
on the symmetry energy at high density.

Neutron stars cool by neutrino emission from the inte-
rior. If the proton fraction is large, above about 0.13, then
neutrons near the Fermi surface can beta decay to protons
and electrons near their Fermi surfaces and conserve both
momentum and energy. This leads to the direct URCA
process n→ p+e+ ν̄e followed by e+p→ n+νe that will
efficiently cool a NS by rapidly radiating νν̄ pairs. The
neutron radius of Pb constrains the density dependence
of the symmetry energy near ρ0. This is the crucial piece
of information for extrapolating to find the symmetry en-
ergy at large densities. We find that if the neutron minus
proton r.m.s. radii in 208Pb is larger then 0.25 fm, all of
the mean-field EOS models considered allow direct URCA
for a 1.4M¯ NS [14]. Alternatively, if this skin thickness
is less then 0.2 fm, none of the mean-field models allow
direct URCA.

Note, the direct URCA process takes place in the
high-density interior of a NS at a few or more ρ0. There-
fore, the above relation with the skin thickness in Pb in-
volves an extrapolation to higher density. Alternatively,
energetic HI collisions can directly produce high densities.
Therefore it would be extremely useful if one could infer
the high-density symmetry energy from HI observables.
Although potentially difficult and model dependent, mea-
suring the symmetry energy at high density is perhaps the
single most important HI experiment for the structure of
NS.

We close this section with a short discussion of other
ways to determine the density dependence of the symme-
try energy. If one assumes the symmetry energy depends
on a power of the density,

S(ρ) ≈ S0ρ
γ , (5)

then the power γ can be approximately related to the skin
thickness in 208Pb as follows,

〈r2
n〉

1/2 − 〈r2
p〉

1/2 ≈ 0.22γ + 0.06 fm. (6)

This relation is a simple fit to several mean-field cal-
culations, see also [15]. As discussed by Li et al. [16]
and by Colonna and Tsang [17] in the section on isospin
properties of this topical issue, the power γ can be de-
duced from HI data involving observables such as isoscal-
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ing and isospin diffusion. Finally we mention a recent re-
view article which discusses the symmetry energy in as-
trophysics [18].

4 Nuclear pasta and multifragmentation

Nuclei involve an important interplay between Coulomb
and nuclear interactions. Indeed, all baryonic matter is
frustrated. Nucleons tend to be correlated at short dis-
tance, because of short-range nuclear attraction, and anti-
correlated at long distances because of Coulomb repulsion.
Normally, the nuclear and atomic (or Coulomb) length
scales are well separated so nucleons bind into nuclei that
are segregated on a crystal lattice.

However, at densities just below ρ0, in the inner crust
of neutron stars and in supernovae, Coulomb and nu-
clear scales become comparable. Under these conditions,
the surface energy, from nuclear attraction that favors
spherical shapes, and the Coulomb energy, that can fa-
vor nonspherical shapes, compete. This results in exotic
nuclear-pasta phases [19] that can involve spherical (meat
ball), rod (spaghetti), plate (lasagna), or other shapes.

The Coulomb frustration in nuclear pasta is similar to
the frustration found in many condensed-matter systems.
Frustrated systems cannot satisfy all of their elementary
interactions [20]. Examples range from magnetism [21] to
protein folding [22]. Because frustration raises the energy
of the ground state, these systems are characterized by a
very large number of low-energy excitations that lead to
unusual dynamics.

Nuclear pasta may be important for a number of neu-
tron star observables. For example, r-modes are collective
oscillations of NS that can radiate gravitational waves and
may control pulsar spin periods [23]. The sheer viscosity of
the nuclear pasta at the interface between the solid crust
and liquid interior of a NS may determine the damping of
r-modes. This viscosity in turn may depend crucially on
the exotic shapes of the pasta. Some other relevant pasta
properties include thermal conductivity, sheer modules,
and neutrino emissivity.

Core collapse supernovae radiate of order 1058 neu-
trinos. The very large gravitational binding energy of the
newly formed neutron star (100 to 200MeV/A) is released,
almost entirely, in neutrinos. No other known particles can
transport the energy out of the very dense core during the
few second duration of the explosion. These 10 to 20MeV
neutrinos can scatter coherently from the nuclear pasta
because their wavelengths are comparable to the sizes of
the pasta shapes. Thus, neutrino-pasta scattering [24] may
be important for supernova dynamics.

Nuclear pasta in astrophysics may be closely related
to multifragmentation in laboratory heavy-ion collisions.
Heavy ions, at moderate excitation energy, are observed
to break apart into several large fragments [25]. This pro-
cess may occur at the same, slightly subnuclear, densities
where nuclear pasta forms. Furthermore, both pasta for-
mation and multifragmentation are driven by the same
nuclear and Coulomb energies. One may be able to tune

the interactions used in semiclassical simulations of mul-
tifragmentation, in order to reproduce laboratory data.
Then, the same simulations and interactions can be used
to describe nuclear pasta. This allows laboratory data to
be used to constrain astrophysical models.

It is important to go beyond mean-field models in
describing nuclear pasta. Mean-field interactions, fit to
conventional nuclei, may not be appropriate for complex
nonuniform pasta. Furthermore, pasta may not be de-
scribed well by a Maxwell construction, such as in ref. [26]
involving uniform liquid and uniform gas phases. In addi-
tion, the Coulomb interaction plays a crucial role in astro-
physics. The system must be electrically neutral. There-
fore, the positive charge density of the pasta is constrained
to be equal and opposite to the electron density. Finally,
one should consider a wide variety of possible shapes for
the nuclear pasta. Variational calculations involving a few
simple shapes, such as rods or plates, may miss more com-
plicated configurations.

In ref. [24] we consider a simple semiclassical model
where neutrons and protons interact via short-ranged nu-
clear and screened Coulomb forces. The electrons form a
very degenerate Fermi gas and are not included explicitly.
Instead, the very slight polarization of the electrons lead
to a Thomas Fermi screening length λ for the Coulomb
interactions between protons. Our model Hamiltonian is

H =
∑

i

p2
i

2m
+
∑

i<j

V (i, j), (7)

where the two-body potential is

V (i, j) = ae−r
2

ij/Λ+[b+cτz(i)τz(j)]e
−r2ij/2Λ+Vc(i, j). (8)

Here the distance between the particles is rij = |ri − rj |
and the isospin of the j-th particle is τz(j) = 1 for a pro-
ton and τz(j) = −1 for a neutron. The model parameters
a, b, c, and Λ have been fit to reproduce the binding en-
ergy and saturation density of nuclear matter along with a
reasonable symmetry energy [24]. The screened Coulomb
interaction is

Vc(i, j) =
e2

rij
e−rij/λτp(i)τp(j), (9)

where τp(j) = (1 + τz(j))/2 is the nucleon charge and λ
is the screening length from the slight polarization of the
electrons.

This model yields large nuclei or pieces of pasta that
are heavy and have thermal Compton wavelengths much
shorter than their inter-particle spacing. This motivates
our semiclassical approximation. More elaborate interac-
tions can be employed, such as the QMD calculations
of Watanabe et al. [27]. However, our simple interac-
tion reproduces nuclear saturation and includes Coulomb
interactions. We believe these are the most important
features that determine the long-range structure of the
nuclear-pasta phases.

The wavelength of a 10MeV supernova neutrino is
120 fm. To determine the pasta structure at this long
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Fig. 1. Proton density iso-surface for a sample configuration
of 40000 nucleons at ρ = 0.01 fm−3, T = 1MeV and proton
fraction 0.2. The simulation volume is about 160 fm on a side.
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Fig. 2. Fragment size distribution for the sample configuration
of fig. 1, see text.

length scale may require simulations involving many par-
ticles. For example, at 1/3ρ0 there are 100000 nucleons in
a cube 120 fm on a side. We have used special purpose
MDGRAPE computer hardware to perform molecular-
dynamics simulations with 40000 to 200000 nucleons [28].

We are interested in the neutron-rich matter during a
supernova. The proton fraction starts near 1/2 and drops
to low values as electron capture proceeds and electron
neutrinos diffuse out of the core. Figure 1 shows a sample
configuration of 40000 nucleons at a density of 0.01 fm−3,
a proton fraction of 0.2, and a temperature of T = 1MeV.
An iso-surface of the proton density is shown. At this den-
sity, most of the protons cluster into neutron-rich nuclei.
Between these nuclei, there is a low-density neutron gas
that is not shown in fig. 1.
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Fig. 3. Fragment size distributions at ρ = 0.01 and 0.025 fm−3.

To characterize the heavy nuclei in fig. 1 we have used
a clustering algorithm. A nucleon is said to belong to a
cluster if it is within a cutoff radius RC ≈ 3 fm of at least
one other nucleon in the cluster. This divides the 40000 nu-
cleons into about 12000 free neutrons, a collection of light
nuclei, and about 250 heavy nuclei as shown in fig. 2. The
heavy nuclei have an average mass near 〈A〉 ≈ 100 and
a Z/A ≈ 0.3. Note, this Z/A is somewhat greater then
the total proton fraction of 0.2 because of isospin distilla-
tion. The rest of the neutrons go into the low-density neu-
tron gas. Our simulation results are qualitatively similar to
many statistical models such as those of Botvina [29]. The
distribution of clusters reflects a balance between binding
energy, favoring large clusters, and entropy, that favors
light clusters. However in detail, the distribution can be
sensitive to the nuclear masses predicted by a given model.

As the density increases, the background electron gas
cancels more of the Coulomb interaction. This allows the
formation of larger clusters. In fig. 3 we compare the clus-
ter distribution at ρ = 0.01 fm−3 to that at ρ = 0.025 fm−3

(for the same T = 1MeV and proton fraction 0.2). At
ρ = 0.025 fm−3 the average mass is now 〈A〉 ≈ 200 and
there is a tail in the distribution to very heavy nuclei.

Finally, as the density is increased further the nu-
clei start to strongly interact. Figure 4 shows an iso-
surface of the proton density at ρ = 0.05 fm−3 (≈ 1/3ρ0).
Now spherical nuclei are no longer favored. Instead, long
spaghetti-like strands are seen that have complex shapes.
The fragment distribution now includes very large clus-
ters whose size scales with the simulation volume. Thus,
heavy nuclei have percolated together to form a complex
pasta phase. Note that increasing the density still further
to ρ = 0.075 fm−3 (1/2ρ0) results in a transition to uni-
form nuclear matter, not shown.

The clusters seen in figs. 1 and 4 can be characterized
by the static structure factor Sq [24,28]. This describes
the degree of coherence for neutrino scattering from the
nonuniform system. This is directly analogous to Sq for
many complex condensed-matter systems that can be de-
duced from neutron or X-ray scattering. The static struc-
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Fig. 4. Proton density iso-surface for a sample configuration
of 100000 nucleons at ρ = 0.05 fm−3, T = 1MeV and proton
fraction 0.2. The simulation volume is about 120 fm on a side.
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Fig. 5. The static structure factor Sq for T = 1MeV and
Yp = 0.2 for the indicated densities.

ture factor coherently sums the reflected waves for neu-
trino scattering from each neutron in the system,

Sq =
∑

i,j

exp[iq · (ri − rj)], (10)

where q is the momentum transferred from the neutrino
to the system. In fig. 5 we show Sq for densities of 0.01,
0.025, 0.05, and 0.075 fm−3. This scans the density range
from largely isolated nuclei (in fig. 1) through the complex
pasta phases (fig. 4) to uniform nuclear matter. A large
peak is seen in Sq for q ≈ 0.3 fm−1. This corresponds to
neutrino nucleus elastic scattering at ρ = 0.01 fm−3 or
coherent neutrino-pasta scattering at ρ = 0.05 fm−3. Here
the neutrino scatters coherently from all of the neutrons
in a cluster. This peak largely vanishes for the uniform
system at ρ = 0.075 fm−3.

At low q, Sq is small in fig. 5 because of ion screening.
If one places an impurity heavy nucleus or piece of pasta
into the system, the other clusters will rearrange because
of Coulomb interactions until they act to screen the charge
of the impurity. This leads to a reduction of Sq. In the
next section, we will use these results for Sq to discuss the
liquid-vapor transition.

One can use the time dependence of the molecular-
dynamics simulations to calculate the dynamical response
function S(q, w) that measures how likely it is for a neu-
trino to transfer momentum q and energy w to the system.
At ρ = 0.05 fm−3, we find a high-energy peak in S(q, w)
that represents plasma oscillations of the charged pasta
and a peak at low w that may correspond to nucleons
diffusing between the pasta and the vapor [30].

5 Liquid-vapor transition

There is great interest in the transition between a nu-
cleon vapor at low densities and liquid nuclear matter at
high density, see, for example, [31]. Often this is described
as a first-order phase transition. However, here we would
like to discuss two complications to this simple first-order
picture that arise in the thermodynamic limit. First, we
believe the low-density vapor must necessarily be complex
and involve heavier nuclei such as alpha particles in ad-
dition to free nucleons. Second, Coulomb interactions re-
place a first-order liquid-vapor phase transition with com-
plex mixed phases such as nuclear pasta.

The vapor phase, in the limit of very low densities,
can be described exactly with the virial expansion [32,33].
Here, the pressure P is expanded in powers of the fugac-
ity z = exp(µ/T ) where µ is the chemical potential. The
second virial coefficient b2, that gives the z2 contribution
to the pressure, can be calculated exactly in terms of the
two-body elastic scattering phase shifts. However, nuclear
matter is self-bound and tends to form clusters, see fig. 1.
In ref. [33] we considered a system of neutrons, protons,
and alpha particles. Because of their large binding energy,
alphas tend to be more important than mass-3 nuclei. Fur-
thermore at very low densities, heavy nuclei are disfavored
because of their low entropy. We calculated the relevant
second virial coefficients from NN , N -α, and α-α elastic
scattering phase shifts. This allows one to make model-
independent predictions for the alpha-particle fraction in
the low-density vapor, see fig. 6 [33]. Errors in this fraction
can be estimated from neglected third virial coefficients.

The alpha fraction can be large. Therefore, even at
very low densities say 0.001ρ0, the vapor, in the thermo-
dynamic limit, must contain more than just free nucleons.
Note that the virial expansion is exact in the limit of very
low density. It shows that the alpha fraction is nonzero
and grows with increasing density, without having to pass
through a phase transition.

It is interesting to compare this complex nuclear vapor
to steam in the H2O system. This may be the model for
a liquid-vapor phase transition. Clusters of multiple H2O
molecules do indeed form, see, for example, [34]. However,
their abundance is very low. In contrast, the large alpha
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Fig. 6. The alpha-particle mass fraction Xα in symmetric nu-
clear matter versus density at a temperature of 4MeV as calcu-
lated in the virial expansion (solid curve). The error bars are
from estimates of the neglected third virial coefficients. The
curves labeld LS and Sumi are from phenomenological models,
see [33].

binding energy leads to much larger alpha concentrations.
Therefore, nuclear vapor may be much more complex than
water vapor.

We now discuss a possible first-order liquid-vapor
phase transition in astrophysics. A two-phase coexistence
region has large density fluctuations as low-density vapor
is converted to or from a high-density liquid. Scattering
from these fluctuations could greatly reduce the neutrino
mean free path in a supernova [35].

The static structure factor, in the long-wavelength
limit, Sq=0 describes fluctuations in the number of neu-
trons N or density fluctuations,

Sq=0 =
1

N
(〈N2〉 − 〈N〉2). (11)

If we assume fluctuations in the neutron density are pro-
portional to fluctuations in the baryon density, this can
be written

Sq=0 ≈

(

N

N + Z

)

T

dP/dn
. (12)

When two phases coexist, the pressure is constant at the
vapor pressure, and the derivative of the pressure with
respect to density vanishes dP/dn = 0. Therefore, Sq=0

diverges in a two-phase coexistence region of a first-order
liquid-vapor phase transition.

However, we find in fig. 5 that Sq=0 is small, from
ion screening, instead of diverging from density fluctua-
tions. Therefore, the system does not undergo a first-order
liquid-vapor phase transition. The complex structures seen
in fig. 4 can be viewed as a mixed phase with the posi-
tively charged nuclear-pasta liquid in equilibrium with a
low-density nucleon vapor that occupies the space between
the pasta, and is not shown in fig. 4. However, the aver-
age charge density of the pasta must be equal and oppo-
site to the background electron charge density. Therefore,

Coulomb interactions suppress density fluctuations and
eliminate a first-order liquid-vapor phase transition.

Note, Coulomb interactions for the relatively small sys-
tem of a heavy-ion collision, may be smaller and still al-
low features of a liquid-vapor phase transition. However,
Coulomb interactions, in the nearly infinite astrophysical
system, may play a larger role suppressing density fluctu-
ations and modifying the liquid-vapor phase transition.

We end this section with some alternative interpreta-
tions of our results. One can view the complex density
shown in fig. 4 as many microscopic regions of a high-
density liquid phase interspersed with a low-density gas
phase. Furthermore, this microscopic picture may be use-
ful to describe heavy-ion collisions, with only one (or a
few) liquid region(s). However, this picture may have lim-
itations describing large systems in astrophysics. Coulomb
interactions strictly limit the size of any single liquid re-
gion. Thus, there is no uniform thermodynamic limit. Sur-
face effects will always be important. Furthermore, we do
not find the density fluctuations expected of a classical
two-phase coexistence region. If by phase, one means a
macroscopic region, then fig. 4 cannot represent a macro-
scopic liquid phase in equilibrium with a macroscopic va-
por phase.

This microscopic picture can also be applied to our
alpha-particle results in fig. 6. In principle, one can view
alpha particles as very tiny drops of liquid. Then the alpha
concentration in fig. 6 could represent many tiny regions
of a liquid phase in equilibrium with a simple vapor phase
composed of only free nucleons. However, given the very
small size of alpha particles, we think that this two-phase
interpretation is strained.

It may be useful to compare our nonuniform system to
a uniform one. As the density is decreased from ρ0, we find,
at some density, the uniform system becomes unstable and
a nonuniform system is favored. If one changes the density
and temperature very rapidly during a heavy-ion collision,
a uniform phase may persist as a metastable state until
it reaches a spinodal. At the spinodal, the compressibil-
ity is negative and the system may rapidly evolve into
a nonuniform state. However there is no way to enforce
that the density stays uniform. During a core collapse su-
pernova, the density and temperature change very slowly
over a very long time scale of milliseconds. This should
allow plenty of time for the system to reach thermody-
namic equilibrium. We believe the system will promptly
become nonuniform and not pass through a metastable
uniform state. As a result the system may never reach
the spinodal, and any rapid dynamics associated with the
spinodal may not be relevant for astrophysical systems.

Finally, we mention a possible limitation of our re-
sults. We have only run simulations for a few densities
ρ = 0.01, 0.025, 0.05, and 0.075 fm−3, and a single tem-
perature 1MeV. Therefore, we cannot rule out a possible
critical point, and associated critical fluctuations, for other
conditions.
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6 Summary

Heavy-ion experiments provide important data to test
astrophysical models. In general, one must extrapolate
HI data to longer times, larger sizes, and more neutron-
rich systems. The high-density equation of state can be
probed in HI collisions and applied to the hot protoneu-
tron star formed in core collapse supernovae. The parity
radius experiment (PREX) aims to accurately measure
the neutron radius of 208Pb with parity-violating elec-
tron scattering. This determines the pressure of neutron-
rich matter and the density dependence of the symme-
try energy. Competition between nuclear attraction and
Coulomb repulsion can form exotic shapes called nuclear
pasta in neutron star crusts and supernovae. This com-
petition can be probed with multifragmentation HI reac-
tions. A first-order liquid-vapor phase transition has den-
sity fluctuations that could impact neutrino interactions in
supernovae. We use large-scale semiclassical simulations to
study nonuniform neutron-rich matter. We find that the
Coulomb interactions in astrophysical systems suppress
density fluctuations. As a result, the system does not un-
dergo a first-order liquid-vapor phase transition. Finally,
the virial expansion for low-density matter shows that the
nuclear vapor phase is complex with significant concentra-
tions of alpha particles and other light nuclei in addition
to free nucleons.
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Piekarewicz, Angeles Perez-Garcia, and Don Berry. We thank
Marcello Baldo for suggestions. We acknowledge financial sup-
port form the U. S. Department of Energy contract DE-FG02-
87ER40365.
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